Jing-Ke Weng

Scholar: 2015

Awarded Institution
Assistant Professor
Whitehead Institute for Biomedical Research


Research Interests

Mechanistic basis for metabolic evolution in plants


Plants produce a repository of functionally diverse chemicals as a means to adapt to challenging environments. These so-called specialized metabolites protect plants against various abiotic stresses in terrestrial ecosystems, and mediate an array of interspecies interactions, ranging from seduction of pollinators and seed dispersers to defense against pathogens and herbivores. In addition, several classes of plant specialized metabolites also serve as hormones, perceived by complementary signaling networks in host plants to trigger physiological changes in response to environmental cues. Furthermore, many plant-derived specialized metabolites, e.g. paclitaxel, artemisinin, and resveratrol, also possess unique pharmacological properties that directly impact human health. The remarkable chemodiversity in plants is backdropped by rapidly evolving specialized metabolic systems, offering a fascinating platform to understand how complex traits arose in life.

We are interested in addressing five fundamental questions regarding the origin and evolution of chemodiversity in plants: (I) What are the evolutionary trajectories through which multistep specialized metabolic pathways and specific hormone-receptor pairs were assembled? (II) What is the structural and mechanistic basis for the divergence or convergence of catalytic functions in evolving specialized enzymes? (III) What roles do neutral mutation, catalytic promiscuity, protein dynamics, and stability play in natural evolution of new enzyme functions? (IV) Are there distinct biophysical constraints imposed on the same protein fold shaping the differential evolvability in primary and specialized metabolic enzymes? (V) Can we uncover missing genetic and epigenetic components facilitating the rapid evolution of specialized metabolic systems in plants?